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Research Objectives

Previous research has shown that the acoustic startle response, a simple
reflex mediated by four synapses in the brainstem and spinal cord, can be
increased when elicited in the presence of a stimulus previously paired with a
footshock. This "fear-potentiated startle effect" can be selectively blocked
by drugs that decrease anxiety in humans as well as by lesions of the central -
nucleus of the amygdala, an area of the brain known to be critical for fear. A
major goal of the work supported by the AFOSR is to determine the site of
plasticity in the brain that mediates fear conditioning. Experiments during
the last year have focused on the question of whether local infusion into the
amygdala of drugs known to alter learning will affect the acquisition of fear-
potentiated startle and how the peptide corticotropin releasing factor (CRF)
might affect startle.

Accomplishments and progress

Local infusion of NMDA antagénists into the amygdala blocks fear
conditioning

We have found that local infusion into the basolateral nucleus of the
amygdala of the non-selective glutamate antagonist, A-D-glutamylglycine,
completely blocks the acquisition of fear-potentiated startle. A-D-
glutamylglycine was chosen because it blocks neural transmission at synapses
which use excitatory amino acid transmitters such as glutamate and aspartate.
Because it blocks transmission only, temporarily (e.g., for an hour or so), it
effectively produces a reversible "lesion" of brain structures that use
excitatory amino acid transmitters. The fact that it completely blocked fear
conditioning under conditions in which animals were tested one week later,
when the drug effect would have completely worn off, provided ocur first
critical evidence that excitatory amino acid transmission in the amygdala is
involved in the learning of fear."Most importantly, however, we have also
found that local infusion into the basolateral amygdala of selective N-methyl-
D-aspartate (NMDA) antagonists (AP5 or CPP) also completely blocks the
acquisition of fear-potentiated startle. Moreover, local blockade of NMDA
receptors in the amygdala did not prevent animals from showing normal
reactions to footshock, indicating that the interference with learning cannot
be ascribed to a decrease in shock sensitivity. In addition, infusion of APS
into the amygdala did not alter vision, because rats so treated still had
marked visual pre-pulse inhibition, one objective measure of vision in rats.
Finally, local infusion of APS5 into the cerebellum did not block the
acquisition of fear-potentiated startle, even at a dose 8 times higher than
the dose which completely blocked acquisition after infusion into the
amygdala. The results indicate that fear-potentiated startle may provide an
excellent model system to evaluate how NMDA channels regulate learning and




memory using a behavioral measure.

Lesions of the central nucleus of the amygdala block the excitatory
effects of corticotropin releasing factor (CRF) on startle

Intraventricular infusion of the peptide corticotropin releasing factor
(CRF) is known to produce a variety of behavioral effects which occur during
periods of fear or stress. Consistent with previous reports, we have found
that intraventricular infusion of CRF causes a marked increase in the
amplitude of the startle reflex. By testing for a long period after infusion
(e.g., 2-4 hrs) we have found that the effects of CRF are much greater than
previously realized and last for a very long time (at least 6-8 hrs but not 24
hrs). Moreover, the effects of CRF given intraventricularly are eliminated by’
small bilateral lesions of the central nucleus of the amygdala. However, the
amygdala does not seem to be the primary site of action of CRF because local
infusion of CRF into the amygdala does not increase startle. In contrast,
infusion of CRF into the parabrachial nucleus causes a marked and immediate
increase in startle amplitude in doses 100 times lower than doses used
intraventricularly. Because the parabrachial nucleus projects heavily and
directly to the central nucleus of the amygdala, which in turn projects
directly to the acoustic startle pathway, we believe that CRF given
intraventricularly activates cells in the parabrachial nucleus which then
leads to an increase in startle via parabrachial to amygdala connections which
then project down to the startle pathway.

Future experiments

NMDA receptors and fear conditioning

1. At the present time, our fear conditicning phase consists of two, 45-
min training sessions on two consecutive days using 10 light-shock pairings on
each day. In order to completely block fear conditioning, the drug, which is
infused 5 min before each test day, has to last for about 50 min, in order to
block NMDA receptors for the entire training session. If, however, we could
confine our training session to a much shorter total period of time, then the
drug effect would only have to last for a short period of time, allowing a
substantial reduction of the dose, thereby improving our ability to localize
the critical site of action of the drug. Pilet data indicate that we can get
good fear-potentiated startle by giving a total of 5 training trials over a
total time of 8 min. This will be replicated using various shock intensities
and retention intervals to maximize the level of fear conditioning. Once
optimal parameters are found, future studies will use this paradigm to see iérm\\\
substantially lower doses of NMDA antagonists can be used to block fear -
conditioning. If so, then the studies listed below will be carried out using or

these lower doses. ‘.__a?r‘

2. Fear-potentiated startle involves two phases. One, the acquisition dJ
phase, in which lights and shocks are paired and the animal learns to be 3

fearful of the light. Two, the performance or expression phase, in which the &
effects of prior fear-conditioning are measured by an increase Iin the startle
reflex when elicited in the presence of the light paired with shock in the _

a/

Avullability Couas

\ iAvall and/or
Dist i Spoctal




acquisition phase. As stated above, NMDA antagonists block acquisition of
fear-potentiated startle. However, at the present time we do not know whether
NMDA receptors are involved in the expression of fear-potentiated startle. To
test this, rats will be given an acquisition session without drugs but then
tested one week later after local infusion into the amygdala of NMDA
antagonists or other compounds such as CNQX which block non-NMDA excitatory
amino acid receptors. In the hippocampus, most of tha expression of long-term
potentiation is due to a change in non-NMDA transmission, although a small
percentage of long-term potentiation appears to involve NMDA transmission.
Hence, it is simply an empirical question at this stage whether NMDA or non-
NMDA transmission will predominate in the amygdala after fear conditioning.

It is even possible that neither compound will block the expression of fear-
conditioning since other transmitters could just as well be involved in the
expression of fear (e.g., peptides, which are abundant in the amygdala).

3. At the present time we have only infused NMDA antagonists into the
basolateral nucleus of the amygdala and the cerebellum. As mentioned above,
infusion into the cerebellum had no effect, even when much higher doses were
used. However, we do not know about other parts of the amygdala. Based on work
looking at the effects of excitatory amino acid antagonists into the startle
pathway, the data indicate that these compounds have very limited diffusion in
the brain, consistent with their hydrophillic structures. We hope to determine
this more precisely by infusing radioactive AP5 into the amygdala and
measuring the degree of diffusion ‘using autoradiography (this will be done in
collaboration with Dr. Gallager, who routinely using this methodology). Our
problem thus far has been obtaining radioactive AP5, since it iIs only made in
England, in very limited quantities, and it is very hard to get radioactive
material sent from England quickly enough to retain activity.

If we can use this methodology and do find limited diffusion, our first
"control" area will involve local infusion of NMDA antagonists into the
central nucleus of the amygdala. This nucleus receives heavy projections from
the basolateral nucleus; projects directly to the startle pathway; and is
critical for the expression of fear-potentiated startle (as well as fear
measured by a variety of other tests). However, the central nucleus has a
relatively low density of NMDA binding sites and hence may not actually be
involved in the formation of long term plasticity, but instead be critical for
connecting the output of the basolateral nucleus to the startle pathway. If
infusion into the central nucleus has no effect, then infusion into other
amygdala nuclei will also be done. Finally, other studies will infuse NMDA
antagonists into other brain areas (e.g., hippocampus), which are known to be
critical for other types of learning as a further test of anatomical
specificity.

Local infusion of CRF into the parabrachial nucleus

As mentioned in earlier progress reports, a single footshock markedly
increases the acoustic startle reflex for a long period of time (shock
sensitization). This effect is completely blocked by lesions of the central
nucleus of the amygdala or the connection between the amygdala and the startle
pathway. We believe this means that footshock activates the amygdala and that




this action may be critical for the acquisition of conditioned fear.

Neurons in the spinal cord which are activated by noxious stimuli like
footshock project to the parabrachial nucleus which contains a high density of
CRF receptors. It is possible, therefore, that footshock releases CRF into
the parabrachial nucleus which then activates the amygdala via heavy
projections from the parabrachial nucleus to the amygdala. Pilot data
indicate that local infusion of CRF into the parabrachial nucleus increases
startle. This will be replicated using several doses of CRF. In addition, we
will test whether lesions of the amygdala will block the excitatory effects on
startle of local parabrachial infusion of CRF (as they block intraventricular
CRF effects) and possibly whether local infusion of CRF antagonists will block
the excitatory effects of intraventricular CRF. Finally, on the basis of this
work, we will decide whether to test if local infusion of CRF antagonists into
the parabrachial nucleus will block shock sensitization as well as the
acquisition of potentiated startle.
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